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Abstract
We deduce a complete wave propagation equation that includes inhomogeneity of the dielectric constant and present
this propagation equation in compact vector form. Although similar equations are known in narrow fields such as radio
wave propagation in the ionosphere and electromagnetic and acoustic wave propagation in stratified media, we develop
here a novel approach of using such equations in the modeling of laser beam propagation in nonlinear media. Our
approach satisfies the correspondence principle since in the limit of zero-length wavelength it reduces from physical to
geometrical optics.
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1. Introduction

The science of nonlinear optics is one of the rapidly growing
fields driven by multiple important technological applica-
tions. Since the invention of lasers this field has experienced
revolutionary progress fueled by splendid experimental and
theoretical results that provide deep understanding of the
nonlinear response of matter to high intensity electromag-
netic waves. However, as we will demonstrate here, this
achievement was accompanied by the fundamental failure
of one particular subdiscipline – the propagation of a laser
beam in nonlinear media.

Many theoretical works describing laser propagation in
nonlinear media have been published since the concept of
laser beam self-focusing and self-trapping was proposed[1].
After more than 50 years of intense research the theoretical
concepts and models of self-focusing, beam self-trapping,
filamentation and filament plasma defocusing and the corre-
sponding mathematical models were formulated. The books
and extensive reviews (for example, Refs. [2–8]) written
within the past two decades devote chapters to the detailed
description of the peculiarities of this physical phenomenon.
Current frontier research of laser beam propagation in
nonlinear media deals with ingenious formulations and
creative solutions of the nonlinear Schrodinger equation
that describes laser beam collapse, self-trapping, disper-
sion, filamentation, modulation instability, pulse splitting
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and other extraordinary particularities of nonlinear beam
propagation[6, 9, 10]. Therefore, understandably, we did not
expect to discover that the results obtained with our recent
straightforward theoretical model and numerical simulation
of ultrahigh intensity laser pulse propagation in gases[11, 12]

contradict the established models of self-focusing, beam
self-trapping, filamentation and continuum generation.

Being unable to find either errors or invalidating as-
sumptions in our forthright approach we journeyed back
to the source (Maxwell’s equations) in order to review the
foundational scientific principles. This examination exposed
the assumptions in the original physical concept that, in our
opinion, are inconsistent and self-contradictory. Also, this
examination provided theoretical justification and supports
the validity of our previously published approach[11, 12].
Below is the account of the results of this journey.

2. Formulation of general equation for beam of electro-
magnetic wave propagation in nonlinear media

As is well known, the electric and magnetic fields in di-
electric media are described by the macroscopic Maxwell’s
equations as follows:

∇ · ED = 0, (1)

∇ · EB = 0, (2)

∇ × EE = −∂
EB
∂t
, (3)
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∇ × EH = ∂ ED
∂t
, (4)

where EE and EB are the electric and the magnetic fields, cor-
respondingly, while ED and EH are, respectively, the displace-
ment and magnetization fields. The latter fields, sometimes
called ‘macroscopic’ fields, reflect the effect from matter and
are defined using phenomenological constituent equations
that relate them to the ‘microscopic’ electric field, EE , and
the magnetic field, EB:

ED = ε0ε EE, (5)
EB = µ0µ EH , (6)

where ε0 and µ0 are the permittivity and the permeability
of free space and ε and µ are the permittivity and the
permeability of material.

Following the known procedure we take the curl vector
operator of both sides of Equation (3) and the time derivative
of both sides of Equation (4) and assume that the magnetic
effect of the media is negligible, i.e., µ = 1. Then, using
Equations (5) and (6), we can eliminate the magnetic and
magnetization fields, obtaining the equation for the electric
field

∇ ×(∇ × EE)+ ε0µ0
∂2(ε EE)
∂t2 = 0. (7)

Assuming that the material effect on the electric field is
slow compared to the period of optical oscillation or the
laser pulse duration, i.e., assuming time independence of the
permittivity of material, assuming that the material is weakly
absorbing, and recalling that the speed of the electromagnetic
wave in a vacuum is c = 1/

√
ε0µ0 and the index of refraction

of the material is n = √ε, we rewrite Equation (7) as

∇ × (∇ × EE)+ n2

c2
∂2 EE
∂t2 = 0. (8)

Now, using the identity ∇ × (∇ × EA) = ∇(∇ · EA)−1 EA we
rewrite Equation (8) in the following form:

1 EE − n2

c2
∂2 EE
∂t2 −∇(∇ · EE) = 0. (9)

From this point the derivations will significantly deviate
from the procedure commonly performed in all of the books
and journal publications on nonlinear optics since we will
be considering the permittivity of the material and, conse-
quently, the index of refraction, as a coordinate dependent
function. In contrast to our approach, customary considera-
tions treat permittivity as a constant, zeroing the third term in
the left-hand side of Equation (9) and reducing this equation
to the commonly known form that contains only two first
terms and is called the wave equation. As we show below,
neglecting the third term is a significant mistake that leads to

an inadequate description of wave propagation in nonlinear
media.

For the conditions of inhomogeneity of the properties
of electrically neutral media, such as in the case of prop-
agation of short wavelength waves in the ionosphere[13],
Equation (9) can be rewritten in the following form:

1 EE − n2

c2
∂2 EE
∂t2 +∇

(
∇ε · EE
ε

)
= 0, (10)

where we use Equations (1) and (5) from which it follows
that∇ε· EE+ε∇ · EE = 0 and, therefore,∇ · EE =−(∇ε · EE/ε).
Finally, recalling that ε = n2 and using the convenient
expression for the displacement field ED = ε0ε EE = ε0(1 +
χ) EE = ε0 EE + EP , where χ is the electric susceptibility and
EP is the polarization density, we rewrite Equation (7) in the

following form:

1 EE − 1
c2
∂2 EE
∂t2 + 2∇

(
∇n · EE

n

)
= µ0

∂2 EPL

∂t2 + µ0
∂2 EPN L

∂t2 ,

(11)
where the polarization density vector is represented by the
sum of linear and nonlinear components denoted using the
subscripts ‘L’ and ‘N L’, respectively.

The solution of the propagation equation expressed in the
form of either Equation (10) or (11) can be expressed in
terms of the slowly varying amplitude function

EE(Er , t) = EA(Er)ei(Ek(Er)·Er−ωt) + c.c. (12)

In this solution the vector amplitudes of the electric field
and the wavevector are coordinate dependent, i.e., expres-
sion (12) represents the electric field of a nonplanar wave.

Below we will demonstrate that, within paraxial approx-
imation and considering the propagation range in which
variation of the spatial profile of laser beam irradiance due
to the effect of nonlinear induced refraction is small and,
thus, can be considered as perturbation, the propagation
Equations (10) or (11) can be straightforwardly modified into
an equation that, as proposed in Refs. [11, 12], has a solution
represented by the blending of the solution of the Helmholtz
equation for propagation of a laser beam in a medium with a
uniform and irradiance independent refractive index similar
to the one obtained by Kogelnik and Li[14] and a correction
term that represents nonlinear field perturbation expressed in
terms of paraxial ray optics (the eikonal equation)[15].

3. Examination of current theory for laser beam propa-
gation in nonlinear media

Now we will demonstrate that the current formulations of
the propagation equation in nonlinear (self-induced inho-
mogeneity) media are based on two inconsistent and self-
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contradictory assumptions. First, in all theoretical works
known to us it is assumed that the laser beam has a plane
wavefront. Second, as mentioned above, the term responsi-
ble for refraction due to media inhomogeneity is disregarded,
i.e., the media are assumed as homogeneous.

Under the first assumption, i.e., assumption of a plane
wavefront, the solution of the propagation equation is
expressed in the form of the slowly varying amplitude
function

EE(x, y, z, t) = Ax (x, y, z)ei(kz z−ωt) x̂

+ Ay(x, y, z)ei(kz z−ωt) ŷ + c.c. (13)

Note that here, in accordance with the plane wave assump-
tion, the scalar product of vectors Ek · Er from Equation (12) is
substituted with the product of scalars – kzz, where kz is the
component of the wavevector along the z-axis. The solution
form of Equation (13) assumes that the x- and y-components
of the wavevector and z-component of the electric field are
zero, i.e., the beam propagates exactly along the z-axis.

According to the second assumption, the term describing
refraction on the gradient of the refractive index is neglected.
Then, assuming linear polarization and, since the require-
ment of slowly varying amplitude implies that∣∣∣∣∣∂2 A

∂z2

∣∣∣∣∣�
∣∣∣∣k ∂A
∂z

∣∣∣∣ , (14)

Equation (10) can be reformulated in a form retaining only
the amplitude A(x, y, z) of the electric vector aligned along
either the x-axis or the y-axis,

1T A +
(
ω2n2

c2 − k2
z

)
A + 2ikz

∂A
∂z
= 0, (15)

where 1T is the transverse Laplace operator.
By definition, the wavevector k = ωn/c, and since a

plane wave is assumed, the second term in Equation (15)
must be zero. However, all textbooks and scientific articles
at this stage of consideration submit that the wavefront
deviates from a plane. This, of course, contradicts the initial
assumption of a strictly plane front; however, is necessary,
as otherwise the self-focusing and self-trapping would not
follow from Equation (15). Thus, the second term of
propagation Equation (15) in all current models is assumed
to be nonzero. We will show below that this manipulation
has a devastating consequence.

Another inconsistent assumption of the current theory of
electromagnetic wave propagation in nonlinear media is that
the third term in complete propagation Equation (11) is
negligible and can be omitted, leading to the commonly
used Equation (15). As far as we know a justification
for such an omission was never provided. It appears that
the origin of this assumption can be traced to the original

work[16]. All of the subsequent works, except for our recent
publications[11, 12], followed the path laid[16] and labored on
various mathematical treatments of equations that can be
traced to the propagation equation deduced for homogeneous
media. Thus, the ‘foundational’ propagation equation in
nonlinear optics was deduced while disregarding media
inhomogeneity (inherent, induced or self-induced), and has
the form of Equation (15) missing the ‘refraction’ term (see
for example, Equation 7.2.9 in Ref. [3]).

At this point one should wonder how an equation with a
term missing the refraction due to media inhomogeneity can
describe self-focusing. The answer is hidden in the second
term of Equation (15). The ‘nonzeroing’ of the second term
in Equation (15) is crucial for constructing all nonlinear
propagation effects out of this oversimplified equation. In-
deed, introducing nonlinearity of the refractive index, n =
n0 + n2〈|E |2〉t , Equation (15) can be modified into the
following form[17, 18]:

∂2 E
∂x2 + 2ik

∂E
∂z
= −k2 n2

n0
|E |2 E, (16)

that is equivalent to the infamous (in the realm of nonlinear
wave propagation) nonlinear Schrodinger’s equation[19]

∂2ψ

∂x2 + i
∂ψ

∂z
= −κ|ψ |2ψ. (17)

4. Revised propagation equation for slowly varying am-
plitude

Let us revise the foundation of the current theory for the
propagation of a beam of an electromagnetic wave in a
nonlinear medium. In this consideration we will use the
general form of 3D propagation Equation (7) that follows
directly from Maxwell’s equations. Following a traditional
approach, we will look for the solution of this equation in
the following form of wave with varying amplitude:

EE = Ex x̂ + Ey ŷ + Ez ẑ = EA(x, y, z)p(t)ei(kx x̂+ky ŷ+kz ẑ−ωt)

= (Ax (x, y, z)x̂ + Ay(x, y, z)ŷ + Az(x, y, z)ẑ)p(t)

× ei(kx x̂+ky ŷ+kz ẑ−ωt), (18)

where function p(t) is the dimensionless pulse shape such
that the time integral of this function from minus to plus
infinity equals unity.

Let us now modify propagation Equation (9) assuming
that the pulse shape is a slowly varying function compared
to the period of wave oscillation and that the dielectric
constant, ε, and therefore the refractive index, n, are time
independent. Then, recalling that ε = n2, and substituting
solution of Eqaution (18) into Equation (9), neglecting the
time derivative of pulse shape p(t) as it is a slow function,
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and eliminating the exponent of phase, Equation (9) can be
transformed into the equation for the amplitude,(

k2
x + k2

y + k2
z −

ω2n2

c2

)
Ax x̂

+
(

k2
x + k2

y + k2
z −

ω2n2

c2

)
Ay ŷ

+
(

k2
x + k2

y + k2
z −

ω2n2

c2

)
Az ẑ

− 2i
(

kx
∂Ax

∂x
+ ky

∂Ax

∂y
+ kz

∂Ax

∂z

)
x̂

−
(
∂2 Ax

∂x2 +
∂2 Ax

∂y2 +
∂2 Ax

∂z2

)
x̂

− 2i
(

kx
∂Ay

∂x
+ ky

∂Ay

∂y
+ kz

∂Ay

∂z

)
ŷ

−
(
∂2 Ay

∂x2 +
∂2 Ay

∂y2 +
∂2 Ay

∂z2

)
ŷ

− 2i
(

kx
∂Az

∂x
+ ky

∂Az

∂y
+ kz

∂Az

∂z

)
ẑ

−
(
∂2 Az

∂x2 +
∂2 Az

∂y2 +
∂2 Az

∂z2

)
ẑ

− 2
[
∇
(∇n

n
· ( EAei(kx x+ky y+kz z))

)]
e−i(kx x+ky y+kz z)

= 0. (19)

Note that the first three terms in the left-hand side of
Equation (19) are null, since by definition k2

x + k2
y + k2

z −
(ω2n2/c2) = 0, and, as in the previous deduction of Equa-
tion (10), we used equation ∇ · EE = −( EE∇ε/ε) in order
to formulate the right-hand side of Equation (19). Thus,
the propagation equation in the nonlinear media has the
following form:

1 EA + 2i

(
kx
∂ EA
∂x
+ ky

∂ EA
∂y
+ kz

∂ EA
∂z

)

+ 2
[
∇
(∇n

n
· ( EAei(kx x+ky y+kz z))

)]
e−i(kx x+ky y+kz z)

= 0. (20)

This equation is cardinally different from the currently
used Equations (15)–(17) in both aspects of physics and
of mathematics. From the point of view of a physicist,
Equation (20) straightforwardly shows that beam refraction
is produced by self-induced inhomogeneity of the refractive
index (that can be a result of the Kerr effect, material
ionization etc.). Also, a physicist will find appealing that the
presented theory expressed by Equation (20) satisfies the cor-
respondence principle since, as we will demonstrate below,
it contains geometrical optics and Equation (20) transforms

into the ray-optics equation under the assumption of
infinitely small wavelength. In contrast, Equations (15)–(17)
do not lead to the geometrical optics in the limiting case
of infinitely small wavelength and thus do not satisfy the
correspondence principle.

From the point of view of a mathematician new equation
of propagation Equation (20) dramatically differs from the
current propagation equation in one very peculiar aspect –
it has no self-similar solution. In contrast, Equation (16)
rewritten as nonlinear Schrodinger’s Equation (17) has a
self-similar solution, or so called soliton solution, that serves
as the foundation for the prediction of laser beam self-
trapping and all the current ‘filament’ theories that predict
mind boggling lengths of self-trapped laser ‘filament’.

5. Modification of the revised propagation equation for
cases of slowly variable amplitude and paraxial laser
beam propagation at distances shorter than or compa-
rable to the Rayleigh length

Let us explore the complete 3D propagation Equation (20)
within paraxial beam approximation while considering a
propagation range in which perturbation of the spatial profile
of laser beam irradiance by the nonlinear induced refraction
is negligible. The latter condition is realized within the
range of several Rayleigh lengths for a focused laser beam
with pulse energy that is below a certain value (see detailed
discussion in Refs. [11, 12]).

Here we will demonstrate that the propagation Equa-
tion (20) leads, as proposed in Refs. [11, 12], to the solution
represented by the blending of the solution of the Helmholtz
equation for propagation of a laser beam in a medium with
uniform and irradiance independent refractive index similar
to the one obtained by Kogelnik and Li[14] and a correction
term that represents nonlinear field perturbation expressed in
terms of a paraxial ray-optics (eikonal) equation[15].

Assuming paraxial beam propagation it is easy to see
that one can neglect in propagation Equation (20) the terms
containing x- and y-components of the wavevector and
the terms containing the z-component of the electric field
amplitude as well as their derivatives (see the schematic of
the paraxial beam propagation in Figure 1).

Assuming linear polarization in the x–z plane and neglect-
ing smaller terms as described above allows the following
simplification of propagation Equation (20):[(

∂2 Ax

∂x2 +
∂2 Ax

∂y2

)
+ 2i

(
kx
∂Ax

∂x
+ kz

∂Ax

∂z

)
− i

(
∂kx

∂x
+ ∂kz

∂z

)
Ax + 2i

(
x
∂kx

∂x
∂Ax

∂x
+ z

∂kz

∂z
∂Ax

∂z

)
− i

(
x
∂2kx

∂x2 + z
∂2kz

∂z2

)
Ax+2

(
xkx

∂kx

∂x
+ zkz

∂kz

∂z

)
Ax
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dx

dzkz

kx

Ax

Az

A

Ray trajectory

Wave front Wave front

Figure 1. Schematic of evolution of electric field amplitude and wavevector
during laser beam propagation.

+
(

x2
(
∂kx

∂x

)2

+ z2
(
∂kz

∂z

)2
)

Ax

]
x̂

+
[(

∂2 Az

∂x2 +
∂2 Az

∂y2

)
+ 2i

(
kx
∂Az

∂x
+ kz

∂Az

∂z

)
− i

(
∂kx

∂x
+ ∂kz

∂z

)
Az + 2i

(
x
∂kx

∂x
∂Az

∂x
+ z

∂kz

∂z
∂Az

∂z

)
− i

(
x
∂2kx

∂x2 + z
∂2kz

∂z2

)
Az+ 2

(
xkx

∂kx

∂x
+ zkz

∂kz

∂z

)
Az

+
(

x2
(
∂kx

∂x

)2

+ z2
(
∂kz

∂z

)2
)

Az

]
ẑ

− 2
[
∇
(∇n

n
· ( EAei(kx x+ky y+kz z))

)]
e−i(kx x+ky y+kz z)

≈
[(

∂2 Ax

∂x2 +
∂2 Ax

∂y2

)
+ 2ikz

∂Ax

∂z

]
x̂ +

[
2ikz

∂Az

∂z

]
ẑ

− 2
[
∇
(∇n

n
· ( EAei(kx x+ky y+kz z))

)]
e−i(kx x+ky y+kz z)

= 0. (21)

Then, from the simplified propagation Equation (21) we can
extract two equations: one for the x-coordinate(

∂2 Ax

∂x2 +
∂2 Ax

∂y2

)
+ 2ikz

∂Ax

∂z

+ 2
[
∇x

(∇n
n

· EAei(kx x+ky y+kz z)
)]

e−i(kx x+ky y+kz z)

= 0, (22)

and the second for the z-coordinate

ikz
∂Az

∂z
+
[
∇z

(∇n
n

· ( EAei(kx x+ky y+kz z))

)]
e−i(kx x+ky y+kz z)

= 0. (23)

The third term in the left-hand side of Equation (22) for
the x- (transverse) component of the amplitude of the
electric field is small compared to the first two terms, and
for the short propagation distances it can be neglected.
Then, Equation (22) acquires a form similar to the equation
obtained for diffraction dominated laser beam propagation
in empty resonators[14]. The solutions of Equation (22)
while neglecting the third term can be found in the classical
article of Kogelnik and Li[14], and according to this work,
the fundamental mode of the solution is represented by the
field that has Gaussian distribution of amplitude in the radial
direction with a beam width that changes along the z-axis
and has a spherical shape of the wavefront with a radius that
is also a function of z. Of course, for far field propagation
the third term in the left-hand side of Equation (22) must
be accounted for, since the relatively small deviations of
the amplitude of the electric field and the shape of the
wavefront should accumulate while propagating at long
distances, resulting in significant modification of both the
beam intensity distribution and the wavefront shape.

Both terms in the left-hand side of Equation (23) have
similar magnitude. Now, let’s demonstrate that the solution
of Equation (23) describes perturbation of the wavefront
of the ‘carrier’ field given by the approximate solution of
Equation (22) described above.

ikz
∂Az

∂z
ẑ = −

[
∇z

(∇n
n

· ( EAei(kx x+ky y+kz z))

)]
× e−i(kx x+ky y+kz z)

= −e−i(kx x+ky y+kz z) ∂

∂z

(
1
n
∂n
∂x

Ax ei(kx x+ky y+kz z)
)

ẑ

= −
[(

1
n
∂2

∂z∂x
− (∂n/∂z)(∂n/∂x)

n2

)
Ax

+ 1
n
∂n
∂x

(
∂Ax

∂z
+ ikz Ax

)]
ẑ

≈ −ikz
1
n
∂n
∂x

Ax ẑ (24)

or
∂Az

∂z
≈ −1

n
∂n
∂x

Ax . (25)

Finally, recalling that in paraxial approximation change of
the angle between the wavevector and z-axis, dϕ, equals the
ratio of the x and z components of the wavevector or the ratio
of the z- and x-components of the electric field amplitude,
Equation (25) can be rewritten as

dϕ = −δAz

Ax
≈ 1

n
∂n
∂x

dz, (26)

which is the eikonal equation[15]. We use integration of this
equation (see, for example, Equation (7) in Ref. [12]) in our
previous works[11, 12] in order to compute radial distribution
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of the angle of the wavevector after the propagation of a
focused laser beam through the caustic under conditions
when focusing due to the Kerr effect and defocusing due
to ionization take place (see, for example, Equation (8) in
Ref. [12]).

At the same time, the local projections of the wavevector
are uniquely determined from the system of equations

k2
x + k2

z =
ω2n2

c2

kx

kz
= tgϕ, (27)

with the solution

kz(x, z) = ωn(x, z)
c(1+ tgϕ(x, z))1/2

,

kx (x, z) = ωn(x, z)tgϕ(x, z)
c(1+ tgϕ(x, z))1/2

. (28)

Finally, complete Equation (20) for electromagnetic wave
propagation written, without affecting its generality, for
linear polarization in the x–z plane (or instead its simplified
equivalent Equation (21) deduced for paraxial and near field
propagation) in combination with Equations (26)–(28) and
with the addition of the equation describing inhomogeneity
of the index of refraction (either self-induced due to the Kerr
effect and ionization or externally induced due to thermal
effect, large scale turbulence, etc. or inherent due to spatially
variable material properties) represents a closed system of
equations that provides a unique solution describing electro-
magnetic wave propagation in an inhomogeneous medium.

6. Example of computational simulation of paraxial
propagation of a focused laser beam in nonlinear media

The results of the simulation of laser beam propagation
through air (normal conditions) assuming Gaussian temporal
shape of the laser pulse with duration τ = 100 fs and a
Gaussian spatial beam profile with the beam radius on 1/e2

level in the waist, w0 = 50 µm, are shown in Figure 2, that
presents the local angle of the wavevector, ϕzs , computed for
propagating from z0 = −2zR to zs = 2zR (here Rayleigh
length is zR = 19.62 mm) as a function of dimension-
less laser radius, r/w(zs) (ratio of radial coordinate to the
Gaussian beam radius w(zs) at the end of the computational
range, zs), for different moments of dimensionless time, η/τ
(negative – before the pulse), and for two pulse energies
of 0.2 and 0.4 mJ.

The simulation results show that the contribution to the
refractive index due to the Kerr effect (Figure 2a) results
in focusing of the central part of the beam. The diffrac-
tion divergence of the outer area of the beam is partially
compensated and in the locations with dimensionless laser

Figure 2. The angle of individual rays at the exit of the zone with high
beam intensity where induced refraction is large computed for laser beam
propagation through air (normal conditions) assuming Gaussian temporal
shape of the laser pulse with duration τ = 100 fs and a Gaussian spatial
beam profile with the beam radius on 1/e2 level in the waist, w0 = 50 µm,
shown as a function of dimensionless laser radius, r/w(zs ), for different
moments of dimensionless time, η/τ , (negative – before the pulse): (a)
total radiated energy per pulse Epulse = 0.2 mJ (maximum irradiance I0 =
2.87 × 1017 W m−2); (b) total radiated energy per pulse Epulse = 0.4 mJ
(maximum irradiance I0 = 5.75×1017 W m−2). All computational results
correspond to the laser wavelength λ = 800 nm.

radius r/w(zs) larger than approximately unity, the self-
induced refraction is negligible and the beam divergence is
governed predominantly by diffraction. For dimensionless
laser radius r/w(zs) < 1 the nonlinear focusing is dominant.
In this region the optical power of the Kerr self-focusing
‘lens’ is increasing with time, reaching its maximum when
laser power is at the maximum value (η = 0) and then
symmetrically (in time) decreasing. Simultaneously with
refraction the nonlinear Kerr produces a shift of the laser
frequency numerically described in Ref. [12].

In nonlinear media that are ionized by the laser radiation
the contribution of the Kerr effect that produces focusing
is combined with the defocusing effect due to nonuniform
ionization (Figure 2b). The ionization is considered as in
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Ref. [12]. We assume that the main ion produced in air is
O+2 . For the laser wavelength λ = 800 nm and typical values
of the radiation intensity at which self-focusing occurs, the
Keldysh parameter γ > 1 and the limit of multiphoton
ionization are valid. The electron number density is given
by the equation

Ne(r, z, t) =
∫ t

−∞
σk[N0−Ne(r, z, ξ)][I (r, z, ξ)]kdξ (29)

where N0 is the number density of neutrals, and I (r, z, t)
is the laser pulse intensity; σk is the ionization rate due to
absorption of k photons such that k = int[Ii/}ω] + 1, where
Ii is the potential ionization of gas and ω is the laser angular
frequency.

The effect of media ionization on the beam propagation
results in strong divergence of the near-axis part of the
beam (Figure 2b). The maximum angle of divergence is
increasing in time as the degree of ionization grows, reaching
its maximum at the end of the laser pulse. Simultaneously,
the outer part of the beam behaves similarly to the above
described dynamics, dominated by the focusing due to the
Kerr effect.

It was shown in our previous work[11] that the critical
laser power for self-focusing depends on the laser intensity,
which is determined by the effective radius of a Gaussian
beam. This power is substantially less than independent of
laser intensity critical power computed in accordance with
the current theory[16]. For example, our theory predicts that
for the interaction conditions as in Figure 2 the critical power
is Pcr ≈ 0.135 GW. Whereas, for the same conditions,
the current theoretical model predicts the almost order of
magnitude larger value Pcr ≈ 1.7 GW.

7. Concluding remarks

For obvious reasons, it is usual practice in the majority of
nonspecialized educational courses and textbooks to ignore
the contribution of the term containing ∇ε and describe
electromagnetic wave propagation using the equation de-
duced for uniform media. Unfortunately, without much
consideration, this propagation equation was adopted in
nonlinear optics and after modifications it took the form of
Equations (15) and (16). Then, a relatively recent trend
mandated further modification of this simplified equation
in order to acquire an appearance similar to the nonlin-
ear Schrodinger’s equation (i.e., Equation (17)). Here we
would like to reinforce that omitting the third term in the
left-hand side of the above derived complete propagation
Equation (9) leads to inadequate description of the physics
involved. Indeed, it is self-contradictory to disregard the
inhomogeneity of optical properties of media (both induced
and inherent) at the stage of deduction of the propagation

equation and then to reintroduce into the obtained sim-
plified propagation equation the nonlinear dependence of
the index of refraction, n, on the laser irradiance. Trivial
estimates show a non-negligible contribution of the term
containing ∇ε in complete Equation (10) for laser beam
propagation in nonlinear media. Therefore, ignoring this
term leads to false predictions. One of the examples of
such false prediction is waveguide like propagation of a laser
beam in nonlinear media[16] that leads to the development
of fascinating concepts of optical soliton and laser beam
filamentation that recently produced a flurry of extensive
theoretical research. It is easy to see that for a laser beam
with intensity distribution that is near-Gaussian a possible
solution of an incorrectly abbreviated propagation equation,
such as Equations (15)–(17), indeed has a self-similar form.
The currently accepted interpretation of this self-similarity
is that the diffraction divergence and divergence produced
due to media ionization is compensated by self-focusing[2–4].
One of the results, following on from the self-similarity of
the solution of this inadequate propagation Equations (15)–
(17), is a captivating (however, contradictory to experimental
observations) prediction that kilometers long transmission of
the laser beam can be achieved in an atmosphere without the
beam diverging[6].

Our work demonstrates that the solution of complete
Equation (10) that adequately describes laser beam propa-
gation in nonlinear media does not have self-similar form.
As a demonstration we solved a complete propagation equa-
tion for the conditions when input from the nonlinear re-
fraction can be treated as perturbation of the solution of
the linear Helmholtz equation describing propagation of a
focused laser beam[11, 12]. This solution demonstrated that
laser beam divergence is affected by Kerr self-focusing and
plasma defocusing differently in different radial locations of
the laser beam and in different times during the laser pulse,
i.e., self-similar beam propagation does not occur.

Another inconsistency of the customary approach in which
Equation (17) or its derivatives are utilized for modeling of
diverging or converging laser beam propagation in nonlinear
media is that Equation (17) is derived under the assumption
of a plane wavefront. Consequently, it is inapplicable for
the description of nonplanar wavefronts. However, in a
self-contradictory manner similar to the above illustrated
reinsertion of the nonlinear effect into Equation (17), the
complex nonplanar wave propagation is described in all
current theoretical models using plane wave propagation
Equation (17) or its derivatives. At this point it is worth
mentioning that the Poynting vector maintains its direction
in the approximation of a plane wavefront. In contrast, for a
converging or diverging laser beam the local direction of the
Poynting vector varies as a function of the distance from the
axis. Our previous eikonal-paraxial model[11, 12] correctly
reflects this behavior of the Poynting vector.

The effect of inhomogeneity of the dielectric constant
on electromagnetic wave propagation is known in several
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relatively narrowly specialized fields. So far, the practical
application of this concept was limited to the theory of
radio wave propagation in the ionosphere (see Ref. [13]) and
electromagnetic and acoustic wave propagation in stratified
media[20], such as radar propagation in atmospheric bound-
ary layers[21].

In conclusion we summarize the contribution of this work
to the field of nonlinear optics as follows. (1) Realization
that the gradient of dielectric constant always provides a non-
negligible contribution in the propagation equation of a laser
beam with realistic beam profile because the characteristic
length of change of irradiance is comparable to the ‘beam
size’ (for any reasonable definition of this physical property).
(2) Development of the method described in Refs. [11, 12]
in which we integrated diffractive and geometrical optics by
blending the solution of the linear Maxwell’s equation and
a correction term that represents nonlinear field perturbation
expressed as solution of a paraxial ray-optics (eikonal) equa-
tion that opens an elegant means of numerical computation
of the ray trajectories (avoiding singularities) as the focused
laser beam propagates in a nonlinear and ionized medium
through its caustic (the area near the focal plane that extends
several Rayleigh lengths).

The realm of nonlinear optics that deals with laser beam
propagation has benefited from a multitude of experimental
works and significant experience has been accumulated in
solving complex mathematical problems. However, it seems
that substantial improvement of the theoretical part of non-
linear optics is needed and revision of the fundamentals of
the theoretical model provided in our work can revitalize and
substantially advance this field.
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